AFTA Coronagraph (non-VNC) Modeling Update

John Krist (JPL)

27 September 2013

Modeling Status (non-VNC)

- Lyot/VVC/shaped pupil layout delivered
 - Zemax prescription unfolded for use by PROPER
 - Alterations required to enforce 48 mm diameter pupil at DM 1 and collimated beam to DM 2
 - Phase & amplitude errors generated for each optic
 - Off-axis aberrations and distortions not included in PROPER models
- A variety of shaped pupils were delivered late last week
 - Discovery (360° field) and characterization (57° dual field)
 - End-to-end modeling in the AFTA aberrated system performed
 - NOT directly compatible with official AFTA pupil (but close)
- Monochromatic PIAA solution delivered on Tuesday
 - For verification of modeling results
- Early (unofficial, pre-Princeton meeting) HLC evaluated
- Non-optimal monochromatic vector vortex investigated
- ACAD remapping propagation methods investigated

The Enemy

Technical data is controlled under U.S. Export Regulations; release to foreign persons may require export authorization

Discovery Mask

Transmission = 26% relative to AFTA obscured pupil

No aberrations Mean contrast = 3.1×10^{-9}

Circles = $6.5 \& 16.5 \lambda/D$

Discovery Shaped Pupil Evaluation

- Evaluated over $\lambda = 522 578$ nm, $\lambda_c = 550$ nm
- Sensing & control at 5 wavelengths spanning bandpass
- Measurement field: $6.5 < r < 16.5 \lambda_c/D$
- All contrast maps & measurements shown are broadband
- Mask at 1st pupil after DMs, field stop at following focus

After EFC

Aberrations on all optics

Mean contrast = 2.2×10^{-9}

Circles = $6.5 \& 16.5 \lambda/D$

After EFC

All synthetic error maps

Mean contrast = 2.2×10^{-9}

Circles = $6.5 \& 16.5 \lambda/D$

Measured primary & secondary error maps

Mean contrast = 2.1×10^{-9}

Characterization Mask

Transmission = 29% relative to AFTA obscured pupil

No aberrations Mean contrast = 5.3×10^{-9}

Characterization Shaped Pupil Evaluation

- Evaluated over $\lambda = 522 578$ nm, $\lambda_c = 550$ nm
- Sensing & control at 5 wavelengths spanning bandpass
- Measurement field:
 - $X > 4 \lambda_c/D$
 - R < 15 λ_c /D
- All contrast maps & measurements shown are broadband
- Mask at 1st pupil after DMs, field stop at following focus

Before EFC

Aberrations on all optics

Before wavefront control

Mean contrast = 3.7×10^{-5}

After flattening Mean contrast = 4.4×10^{-6}

After EFC

Mean contrast = 2.7×10^{-9}

One-sided Dark Hole After EFC

Mean = 1.8×10^{-9}

Mean = 1.9×10^{-9}

Started with 2-side DM settings

Started fresh with Flattened wavefront

Smaller Dark Hole: 4 – 8 λ/D

Shaped Pupil Conclusions

- Achieves 2-3 x 10⁻⁹ mean contrast over target region, 5-10 x 10⁻⁹ near IWA
- Broadband (tested over 10%)
- ~25% mask transmission
- Current pupils not exactly matched to official pupil, but very close (do not expect performance to change significantly with official pupil)

Propagation of ACAD DM Patterns

- Remapping/apodization of the spiders by using the DMs requires large total strokes (~0.5 μm)
- Pueyo & Norman (2013) suggested that typical Fresnel propagators would fail to properly account for the large strokes and remapping
- A new propagation algorithm, SR-Fresnel, was devised
 - Combined ray tracing to derive remapping function with supposedly more accurate propagator
 - SR-Fresnel is very slow for propagating an arbitrary input wavefront
 - Tests show 2-D SR-Fresnel algorithm does not properly propagate phase term
- New comparisons with Fresnel and S-Huygens reveal Fresnel algorithms are accurate for large strokes of at least a few microns
- Pueyo concurs with this conclusion

Unobscured, large stroke

Both S-Huygens and PROPER data are smoothed

Unobscured, large stroke

With dark ring

- Add 1.3% (0.32 mm) thick dark ring to initial wavefront at position largest 2nd derivative
- Use large stroke (0.5 um) case
- Propagate with S-Huygens (1-D) and PROPER (2-D)

Obscured, large stroke

Obscured, large stroke

ACAD Conclusions

- Fresnel propagators are accurate for ACAD (large stroke) DM solutions
- Current Fresnel-computed DM solutions for HLC from Moody are physically correct solutions
- Pueyo concurs